OSTIM TECHNICAL UNIVERSITY FACULTY OF ENGINEERING COURSE SYLLABUS FORM 2022-2023

Course Name	Course Code	Period	Hour	Apllication Hour	Lab Hour	Credit	ECTS
Modern Physics	EEE205	Fall	3	0	0	3	3

Prerequisite	Calculus, algebra, trigonometry, complex numbers, classical mechanics, electricity and magnetism
Language of Instruction	English
Course Status	Compulsory
Course Level	Undergraduate
Method of Teaching	In class lectures, with home textbook reading
Learning and Teaching Techniques of the	Lectures, Homeworks, Quizzes, Textbook Reading
Course	

Course Objective

The aim of the course is to introduce the students to the electromagnetic waves based on the Maxwell equations for develop conceptual understanding of waves, learning the relevant mathematics, pursuing advanced studies in engineering, the ability to reason, and gain skills for problem solving.

	Learning Outcomes				
	Upon successful completion, students will have the knowledge and skills to:				
1	Understand basic concepts of special relativity, quantum mechanics, quantum theory of atoms, molecules, solids, metals and semiconductors, elementary particles and cosmology				
2	Understand basic mathematical tools used in the elementary presentation of Modern Physics				
3	Understand basic experiments, which stimulated the development of major concepts of Modern Physics from the earlier days until the latest achievements.				
4	Formulate, analyze, and solve typical problems in the general course of Modern Physics				

Course Outline

This course is an introduction to Modern Physics that covers special relativity, quantum mechanics, quantum theory of atoms, molecules and solids, metals and semiconductors, basics of electronic devices, lasers and superconductivity, elementary particles and cosmology. The course presents basic knowledge in these areas concerning experimental facts, their interpretaions, historical development of theoretical concepts, and minimal mathematical tools needed for the discussion of these concepts.

Weekly Topics and Related Preparation Studies					
Weeks	Topics	Preparation Studies			
1	Light Waves, Interference	[1], Ch. 35			
2	Diffraction, Polarization	[1], Ch. 36			
3	Special Relativity	[1], Ch. 37			
4	Quantum Mechanics: Origin	[1], Ch. 38			
5	Quantum Mechanics: Basic Laws	[1], Ch. 39			
6	Quantum Mechanics: Equations	[1], Ch. 39			
7	Quantum Mechanics: Atoms	[1], Ch. 40			
8	Midterm				
9	Molecules and Solids - I: Bonding and Molecules	[1], Ch. 41			
10	Molecules and Solids – II: Bonding and Solids	[1], Ch. 41			
11	Electrons in Solids: Metals and Semiconductors	[4], Ch. 16, 17			
12	Semiconductor Devices	[4], Ch. 18			
13	Nuclear Physics	[1], Ch. 42			
14	Nuclear Energy	[1], Ch. 43			
15	Particles and Cosmology	[1], Ch. 44,45			
16	Final Exam				

Textbook(s)/References/Materials:

Textbook:

[1] D. C. Giancoli, *Physics for Scientists and Engineers with Modern Physics*, 4th Ed., Prentice Hall, 2009 **References:**

[2] R. A. Serway and J. W. Jewett, Jr., *Physics for Scientists and Engineers with Modern Physics*, 9th Ed., 2014

[3] D. Halliday and R. Resnick, Fundamentals of Physics, 10th Ed. Extended, Editor J. Walker, Wiley, 2018

[4] S. H. Simon, The Oxford Solid-State Basics, 1st Ed., 2013 (some sections)

Assessment					
Studies	Number	Contribution margin (%)			
Active Participation		5			
Lab					
Application					
Field Study					
Course-Specific Internship (if any)					
Quizzes / Studio / Critical	5	15			
Homework	5	25			
Presentation					
Projects					
Report					

Seminar		
Midterm Exams / Midterm Jury	1	25
General Exam / Final Jury	1	30
	Total	100
Success Grade Contribution of Semester Studies		70
Success Grade Contribution of End of Term		30
	Total	100

Course Category			
Basic Vocational Courses	Х		
Specialization/Field Courses			
Support Courses			
Communication and Management Skills Courses			
Transferable Skills Courses			

Relationship Between Course Learning Outcomes and Program Competencies					ies	
No	No Learning Outcomes	Contribution Level				
NO		1	2	3	4	5
1	Ability to apply knowledge of mathematics, science, and engineering					х
2	Ability to design and conduct experiments and to analyze and interpret experimental results.					
3	Ability to design a system, component, and process according to specified requirements.				х	
4	Ability to work in teams in interdisciplinary areas.					
5	Ability to identify, formulate and solve engineering problems.				х	
6	Identifies, defines, formulates and solves elementary problems of modern physics; chooses and applies analysis and modeling methods suitable for this purpose.					х
7	Develops, selects and uses appropriate techniques and tools necessary for the analysis and solution of physical problems encountered in Electrical and Electronics Engineering applications; uses required technologies effectively.				x	

ECTS / Workload Table					
Activities	Number	Duration (Hours)	Total Workload		
Course hours (Including the exam week: 16 x total course hours)	16	3	48		
Laboratory					
Application					
Course-Specific Internship					
Field Study					
Study Time Out of Class	14	1	14		
Presentation / Seminar Preparation					
Projects					
Reports					
Homeworks	5	1	5		
Quizzes / Studio Review (during the lectures)	5	-	-		
Preparation Time for Midterm Exams / Midterm Jury	1	5	5		
Preparation Period for the Final Exam / General Jury	1	5	5		
Total Workload	ECTS 77/	25 = 3.08			