OSTIM TECHNICAL UNIVERSITY FACULTY OF ENGINEERING

COURSE SYLLABUS FORM 2022-2023

Course Name	Course Code	Period	Hour	Apllication Hour	Lab Hour	Credit	ECTS
Int. to Logic Design	EEE207	Fall	3	0	0	3	3

Prerequisite	None
Language of Instruction	English
Course Status	Obligatory
Course Level	Undergraduate
Method of Teaching	In class lectures
Learning and Teaching Techniques of the	Lectures, Homeworks, Projects
Course	

Course Objective

The aim of this course is to introduce students digital-analog concepts, number systems, Boolean operations, combinational logic circuits, simplifications, Karnaugh map, sequential logic circuits, programmable devices, registers and counters, digital/analog and analog/digital conversion... and to prepare them for advanced courses in microprocessors, computer architecture and VLSI.

	Learning Outcomes				
Up	Upon successful completion, students will have the knowledge and skills to:				
1.	Interpret about the differences between between analog/digital signals				
2	Learn about the number systems and boolean algebraic operations				
3	Demonstrate understanding of combinational logic circuits functions				
4	Understand and describe sequential logic circuits functions				
5	Learn about programmable devices, registers and counters				

Course Outline

This course is an introduction to Digital Design with Logic Design as the primary focus. Topics include digital-analog concepts, number systems, Boolean operations, combinational logic circuits, simplifications, K-map, sequential logic circuits, programmable devices, registers and counters, digital/analog and analog/digital conversions etc..

Weekly Topics and Releated Preparation Studies					
Weeks	Topics	Preparation Studies			
1	Digital-analog definitions	Chapter 1, Mano & Ciletti,6th Ed.			
2	Number systems, Boolean operations, Logic gates	Chapter 2, Mano & Ciletti,6th Ed.			
3	Number systems, Boolean operations, Logic gates	Chapter 2, Mano & Ciletti,6th Ed.			
4	Simplification of Boolean functions, Karnaugh map	Chapter 3, Mano & Ciletti,6th Ed.			
5	Simplification of Boolean functions, Karnaugh map	Chapter 3, Mano & Ciletti,6th Ed.			
6	Simplification of Boolean functions, Karnaugh map	Chapter 3, Mano & Ciletti,6th Ed.			
7	2 level implementations	Chapter 3, Mano & Ciletti,6th Ed.			
8	Midterm Exam				
9	2 level implementations, Design of combinational circuits	Chapter 3, Mano & Ciletti,6th Ed.			
10	2 level implementations, Design of combinational circuits	Chapter 3, Mano & Ciletti,6th Ed.			
11	Design of combinational circuits	Chapter 4, Mano & Ciletti,6th Ed.			
12	Design of combinational circuits	Chapter 4, Mano & Ciletti,6th Ed.			
13	Sequential logic circuits, programmable devices, registers and counters.	Chapter 5, Mano & Ciletti,6th Ed.			
14	Sequential logic circuits, programmable devices, registers and counters.	Chapter 5, Mano & Ciletti,6th Ed.			
15	HDL principles, digital/analog and analog/digital conversion	Chapter 6, Mano & Ciletti,6th Ed.			
16	Final Exam				

Textbook(s)/References/Materials:

M. Morris Mano and Michael D. Ciletti, Digital Design with an Introduction to the Verilog HDL, VHDL, and System Verilog, 6th Edition/Global Edition.

Assessment					
Studies	Number	Contribution margin (%)			
Active Participation					
Lab					
Application					
Field Study					
Course-Specific Internship (if any)					
Quizzes / Studio / Critical	2	25			
Homework					
Presentation					
Projects					
Report					

Seminar		
Midterm Exams / Midterm Jury	1	35
General Exam / Final Jury	1	40
	Total	
Success Grade Contribution of Semester Studies		60
Success Grade Contribution of End of Term	40	
	Total	100

Course Category				
Basic Vocational Courses	Х			
Specialization/Field Courses				
Support Courses				
Communication and Management Skills Courses				
Transferable Skills Courses				

Relationship Between Course Learning Outcomes and Program Competencies							
No	Learning Outcomes		Contribution Level				
NO			2	3	4	5	
1	Ability to apply knowledge of mathematics, science, and engineering				х		
2	Ability to design and conduct experiments and to analyze and interpret experimental						
_	results.						
3	Ability to design a system, component, and process according to specified requirements.				х		
4	Ability to work in teams in interdisciplinary areas.				х		
5	Ability to identify, formulate and solve engineering problems.				х		
6	Identifies, defines, formulates and solves complex network problems; chooses and					х	
	applies analysis and modeling methods suitable for this purpose.						
_	Develops, selects and uses modern techniques and tools necessary for the analysis					х	
7	and solution of complex problems encountered in Electrical and Electronics						
	Engineering applications; uses required technologies effectively.						

ECTS / Workload Table					
Activities	Number	Duration (Hours)	Total Workload		
Course hours (Including the exam week: 16 x total course	14	3	42		
hours)					
Laboratory					
Application					
Course-Specific Internship					
Field Study					
Study Time Out of Class	14	2	28		
Presentation / Seminar Preparation					
Projects					
Reports					
Homeworks					
Quizzes / Studio Review	2	3	6		
Preparation Time for Midterm Exams / Midterm Jury	1	12	12		
Preparation Period for the Final Exam / General Jury	1	12	12		
Total Workload	(100/3	0=3,3)	100		