OSTIM TECHNICAL UNIVERSITY FACULTY OF ENGINEERING

COURSE SYLLABUS FORM 2022-2023

Course Name	Course Code	Period	Hour	Application Hour	Lab Hour	Credit	ECTS
Intelligent Cont. Systems	EEE407	Fall	3	0	0	3	4

Prerequisite	None
Language of Instruction	English
Course Status	Elective
Course Level	Undergraduate
Method of Teaching	In class lectures
Learning and Teaching Techniques of the	Lectures, Homeworks, Projects
Course	

Course Objective

The course aims to improve students knowledge about the intelligent control systems and applications. Intelligent control systems are becoming very important for both academia and industry day by day because of complex and nonlinear behaviors of industrial systems. New control methodologies are required to improve the performance of complex and nonlinear systems. Such controllers which are based on soft computing tools such are fuzzy logic, neural network and evolutionary computation will be investigating throughout the course.

	Learning Outcomes				
Upo	Upon successful completion, students will have the knowledge and skills to:				
1.	Learn about the basic concepts of control systems theory				
2	Understand the definitions and basics of fuzzy logic				
3	Analyze the concepts of genetic algorithm (GA)				
4	Demonstrate understanding of the principles and calculations of Neural Networks (NN)				
5	Model and design intelligent control systems, and analyze the fuzzy logic-GA-NN based control systems				

Course Outline

This course is an introduction to Intelligent Control Systems and fuzzy logic as the primary focus. Topics include fuzzy logic, genetic algorithm, neural networks etc..

Weekly Topics and Releated Preparation Studies					
Weeks	Topics	Preparation Studies			
1	Intro- control systems theory	Chapter 1, Negnevitsky, 2 nd Ed			
2	Intro- intelligent control systems	Chapter 1, Negnevitsky, 2 nd Ed			
3	Fuzzy Logic Basics	Chapter 4, Negnevitsky, 2 nd Ed			
4	Fuzzy Logic Basics	Chapter 4, Negnevitsky, 2 nd Ed			
5	Fuzzy Logic Applications	Chapter 4, Negnevitsky, 2 nd Ed			
6	Fuzzy Logic Applications	Chapter 4, Negnevitsky, 2 nd Ed			
7	Fuzzy Logic Applications	Chapter 4, Negnevitsky, 2 nd Ed			
8	Midterm Exam				
9	Genetic Algorithm Basics	Chapter 7, Negnevitsky, 2 nd Ed			
10	Genetic Algorithm Basics	Chapter 7, Negnevitsky, 2 nd Ed			
11	Genetic Algorithm Applications	Chapter 7, Negnevitsky, 2 nd Ed			
12	Neural Network Basics	Chapter 5, Negnevitsky, 2 nd Ed			
13	Neural Network Basics	Chapter 5, Negnevitsky, 2 nd Ed			
14	Neural Network Applications	Chapter 5, Negnevitsky, 2 nd Ed			
15	Fuzzy Logic-Genetic Algorithm-Neural Network based control systems.	Chapter 8, Negnevitsky, 2 nd Ed			
16	Final Exam				

Textbook(s)/References/Materials:

Negnevitsky M. (2002). Artificial intelligence : a guide to intelligent systems. Addison Wesley.

Assessment					
Studies	Number	Contribution margin (%)			
Active Participation					
Lab					
Application					
Field Study					
Course-Specific Internship (if any)					
Quizzes / Studio / Critical					
Homework					
Presentation					

	Total	100
Success Grade Contribution of End of Term		40
Success Grade Contribution of Semester Studies		60
	Total	
General Exam / Final Jury	1	40
Midterm Exams / Midterm Jury	1	30
Seminar		
Report		
Projects	1	30

Course Category				
Basic Vocational Courses	Х			
Specialization/Field Courses				
Support Courses				
Communication and Management Skills Courses				
Transferable Skills Courses				

Relationship Between Course Learning Outcomes and Program Competencies							
No			Contribution Level				
NO	Learning Outcomes	1	2	3	4	5	
1	Ability to apply knowledge of mathematics, science, and engineering				х		
2	Ability to design and conduct experiments and to analyze and interpret experimental results.						
3	Ability to design a system, component, and process according to specified requirements.				х		
4	Ability to work in teams in interdisciplinary areas.				х		
5	Ability to identify, formulate and solve engineering problems.				х		
6	Identifies, defines, formulates and solves complex network problems; chooses and applies analysis and modeling methods suitable for this purpose.					x	
7	Develops, selects and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in Electrical and Electronics Engineering applications; uses required technologies effectively.					x	

ECTS / Workload Table						
Activities	Number	Duration (Hours)	Total Workload			
Course hours (Including the exam week: 16 x total course hours)	14	3	42			
Laboratory						
Application						
Course-Specific Internship						
Field Study						
Study Time Out of Class	14	2	28			
Presentation / Seminar Preparation						
Projects	2	3	6			
Reports						
Homeworks						
Quizzes / Studio Review						
Preparation Time for Midterm Exams / Midterm Jury	1	22	22			
Preparation Period for the Final Exam / General Jury	1	22	22			
Total Workload (120/30=4) 120						