

OSTİM TECHNICAL UNIVERSITY INSTITUTE OF SCIENCES COMPUTER ENGINEERING COURSE SYLLABUS 2022-2023 FALL

EEE201 Electrical Circuits-I							
Course Name	Code	Semester	Theory (hour/week)	Application (hour/week)	Lab (hour/week)	Credits	ECTS
Electrical Circuits-I	EEE201	Fall	4	0	0	4	4

Course Language	English
Course Type	Compulsory
Course Level	Undergraduate
Mode of Delivery	In class lectures
Course Lecturer(s)	Dr. Hüseyin KÖSE
Teaching Methods and Techniques of the Course	Lectures, Homeworks

Course Objectives

The goal of this course to develop an understanding of the elements of electric circuits and the fundamental laws, general techniques such as nodal and mesh analysis, Thevenin and Norton equivalent circuits used in analyzing electric circuits, and develop phasor techniques for AC steady state analysis of circuits. Study on energy storage elements will help students to understand the transient and the steady-state response of RLC circuits. The course also aims to introduce elementary electronic circuits such as operational amplifiers and their circuit models.

Learning Outcomes

Having successfully completed this course, students will be able to:

LO-1: Interpret the basic circuit concepts, such as voltage, current, power, energy, etc.

LO-2: Use node and mesh analyses methods for the analysis of linear time invariant circuits.

LO-3: Analyze circuits by utilizing Thevenin's and Norton's theorems.

LO-4: Analyze circuits with operational amplifiers.

LO-5: Interpret the operation of capacitors and inductors; and analyze both transient and steady-state response of first order circuits.

LO-6: Analyze second order circuits.

LO-7: Identify the concept of phasor; and apply it for the AC steady-state analysis of circuits.

Course Description

Lumped circuits: Kirchoff's laws, basic lumped elements, circuit graphs, circuit equations, linear and nonlinear resistive circuits, first and second order dynamic circuits. Introduction to operational amplifier circuits.

	Subjects and Related Preparation Studies				
Week	Subjects				
1	Introduction to Electrical Circuits				
2	Resistive Circuits; Sources; measurement equipments				
3	Linearity; Nodal Analysis				
4	Nodal Analysis; Mesh Analysis				
5	Mesh Analysis				
6	Thevenin's and Norton's theorems;				
7	Thevenin's and Norton's theorems; Power Transfer;				
	Superposition				
8	Op-Amps				
10	Analysis of resistive Op-Amp circuits				
11	Energy-Storage Elements, Inductors, Capacitors				
12	RC circuits and behaviours, First order circuits				
13	RL circuits and behaviours, First order circuits				
14	RLC circuits and behaviours, Second order circuits				
15	Sinusoidal Steady-State Analysis				
16	Final Exam				

Course Notes/Textbooks

- 1. Textbook: Electric Circuits, Global Edition, 11th Edition, (Pearson) Susan Riedel, James W. Nilsson-2019
- 2. Fundamentals of Electric Circuits, (McGraw Hill)

Evaluation System					
Semester Activities	Number	Weighting			
Participation					
Laboratory					
Application					
Field Work					
Portfolio					
Quizzes / Studio Critiques					
Homework / Assignments					
Presentation					
Project					
Report					
Seminar					
Midterm	1	30%			
Midterm2	1	30%			
Final	1	40%			
	Sum	100 %			
Weighting of Semester Activities on the Final Grade		60 %			
Weighting of End-of-Semester Activities on the Final Grade		40 %			
	Sum	100 %			

Course Category			
Core Courses	Х		
Major Area Courses	X		
Supportive Courses			
Media and Management Skills Courses			
Transferable Skill Courses	Х		

Course Learning Outcomes and Program Qualifications Relationship						
No	Bus anon Commeter dis / Outroumos	Contribution Level				
INU	r rogram Competencies/Outcomes		2	3	4	5
1	Ability to apply knowledge of mathematics, science, and engineering					x
2	Ability to design and conduct experiments and to analyze and interpret experimental				х	
	results.					
3	Ability to design a system, component, and process according to specified					х
	requirements.					
4	Ability to work in teams in interdisciplinary areas.		х			
5	Ability to identify, formulate and solve engineering problems.					x
6	Identifies, defines, formulates and solves complex network problems; chooses and				х	
U	applies analysis and modeling methods suitable for this purpose.					
	Develops, selects and uses modern techniques and tools necessary for the			х		
7	analysis and solution of complex problems encountered in Electrical and					
	Electronics Engineering applications; uses required technologies effectively.					

ECTS / Workload Table					
Semester Activities	Number	Duration (Hours)	Workload		
Theoretical Course Hours	16	4	64		
(Including exam week: 16 x total hours)					
Laboratory					
Application					
Portfolio					
Field Work					
Study Hours Out of Class					
Presentation					
Project					
Reports					
Homework/Assignments					
Quizzes / Studio Critiques					
Midterms	2	20	40		
Final Exam	1	20	20		
Total	$(ECTS \ 124/25 = 4.96)$		124		